If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+3y-76=0
a = 2; b = 3; c = -76;
Δ = b2-4ac
Δ = 32-4·2·(-76)
Δ = 617
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{617}}{2*2}=\frac{-3-\sqrt{617}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{617}}{2*2}=\frac{-3+\sqrt{617}}{4} $
| 15+2x=3(-x+2)-26 | | -25x+75=175 | | 8=f/3 | | c2+10c=0 | | t+20=t+10+1 | | F(x)=x2+3x-2F(1)=2330 | | 4y^2-0-49=0 | | 6(b–10)=30 | | 2x-50+1/2x+15=90 | | 30/90=38/x | | 2w+11=51-3w | | 3/f=8 | | 3÷f=8 | | 4(3x-4)=-32 | | -8(x+2)=-32 | | 3×-4(-2x+1)=4-2(4x+23) | | (2x-50)+(1/2x+15)=90 | | (2x-50)+(1/2x+15)=180 | | 16=1+7y | | 1x-24=-5 | | -8(x+2)=-52 | | u+34=45 | | 9/x=45/27 | | 4t-7=6 | | x-25+65=180 | | 60x+15=15 | | p+20=12 | | q/2.5-8=-4 | | p20=12 | | G(t)=6.72(2)^t | | 3z-5+9z+41=180 | | 900=b4+b |